4.5 Article

Identification and characterization of a Ca2+-sensitive interaction of the vanilloid receptor TRPV1 with tubulin

期刊

JOURNAL OF NEUROCHEMISTRY
卷 91, 期 5, 页码 1092-1103

出版社

WILEY
DOI: 10.1111/j.1471-4159.2004.02795.x

关键词

calcium dependence; capsaicin receptor; cytoskeleton interaction; transient receptor potential V1

向作者/读者索取更多资源

The vanilloid receptor TRPV1 plays a well-established functional role in the detection of a range of chemical and thermal noxious stimuli, such as those associated with tissue inflammation and the resulting pain. TRPV1 activation results in membrane depolarization, but may also trigger intracellular Ca2+-signalling events. In a proteomic screen for proteins associated with the C-terminal sequence of TRPV1, we identified beta-tubulin as a specific TRPV1-interacting protein. We demonstrate that the TRPV1 C-terminal tail is capable of binding tubulin dimers, as well as of binding polymerized microtubules. The interaction is Ca2+-sensitive, and affects microtubule properties, such as microtubule sensitivity towards low temperatures and nocodazole. Our data thus provide compelling evidence for the interaction of TRPV1 with the cytoskeleton. The Ca2+-sensitivity of this interaction suggests that the microtubule cytoskeleton at the cell membrane may be a downstream effector of TRPV1 activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据