4.8 Article

Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 114, 期 11, 页码 1624-1634

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI200422831

关键词

-

向作者/读者索取更多资源

Evidence suggests that Alzheimer disease (AD) begins as a disorder of synaptic function, caused in part by increased levels of amyloid beta-peptide 1-42 (Abeta42). Both synaptic and cognitive deficits are reproduced in mice double transgenic for amyloid precursor protein (AA substitution K670N,M671L) and presenilin-1 (AA substitution M146V). Here we demonstrate that brief treatment with the phosphodiesterase 4 inhibitor rolipram ameliorates deficits in both long-term potentiation (LTP) and contextual learning in the double-transgenic mice. Most importantly, this beneficial effect can be extended beyond the duration of the administration. One course of long-term systemic treatment with rolipram improves LTP and basal synaptic transmission as well as working, reference, and associative memory deficits for at least 2 months after the end of the treatment. This protective effect is possibly due to stabilization of synaptic circuitry via alterations in gene expression by activation of the cAMP-dependent protein kinase (PKA)/cAMP regulatory element-binding protein (CREB) signaling pathway that make the synapses more resistant to the insult inflicted by Abeta. Thus, agents that enhance the cAMP/PKA/CREB pathway have potential for the treatment of AD and other diseases associated with elevated Abeta42 levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据