3.9 Article

Orphan nuclear receptor small heterodimer partner represses hepatocyte nuclear factor 3/Foxa transactivation via inhibition of its DNA binding

期刊

MOLECULAR ENDOCRINOLOGY
卷 18, 期 12, 页码 2880-2894

出版社

OXFORD UNIV PRESS INC
DOI: 10.1210/me.2004-0211

关键词

-

向作者/读者索取更多资源

Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor and acts as a coregulator of various nuclear receptors. Herein, we examined a novel cross talk between SHP and a forkhead transcription factor HNF3 ( hepatocyte nuclear factor 3/Foxa. Transient transfection assay demonstrated that SHP inhibited the transcriptional activity of all three isoforms of HNF3, HNF3alpha, beta, and gamma. In vivo and in vitro protein interaction studies showed that SHP physically interacted with HNF3. Adenovirus-mediated overexpression of SHP significantly decreased the mRNA levels of glucose-6-phosphase (G6Pase), cholesterol 7-alpha-hydroxylase (CYP7A1), and phosphoenolpyruvate carboxykinase (PEPCK) in HepG2 cells and rat primary hepatocytes. Moreover, the mRNA level of G6Pase was notably increased by down-regulation of SHP with small interfering RNA. Interestingly, HNF3 transactivity was still repressed by SHPDelta128-139 that fails to repress nuclear receptors. Mapping of interaction domain revealed that SHP interacted with forkhead DNA binding domain of HNF3alpha. Gel mobility shift and chromatin immunoprecipitation assays demonstrated that SHP inhibits DNA binding of HNF3. These results suggest that SHP is involved in the regulation of G6Pase, CYP7A1, and PEPCK gene expression via novel mechanism of inhibition of HNF3 activity and expand the role of SHP as a coregulator of other family of transcription factors in addition to nuclear receptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.9
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据