4.7 Article

Glycation-induced inactivation of NADP+-dependent isocitrate dehydrogenase:: Implications for diabetes and aging

期刊

FREE RADICAL BIOLOGY AND MEDICINE
卷 37, 期 11, 页码 1765-1778

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.freeradbiomed.2004.08.025

关键词

glycation; diabetes; isocitrate dehydrogenase; aging; hexitol-lysine; free radicals

向作者/读者索取更多资源

Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH), because it supplies NADPH for antioxidant systems. When exposed to reducing sugars such as glucose, glucose 6-phosphate, and fructose, ICDH was susceptible to oxidative modification and damage, which was indicated by a loss of activity and fragmentation of the peptide as well as by the formation of carbonyl groups. The glycated ICDH was isolated and identified by boronate-affinity chromatography and immunoblotting with anti-hexitol-lysine antibody. The active site lysine residue, LyS(212), was identified as one of the major sites of nonenzymatic glycation of ICDH. The structural alterations of modified enzymes were indicated by changes in thermal stability, intrinsic tryptophan fluorescence, and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid. When we examined the antioxidant role of mitochondrial ICDH against glycation-induced cytotoxicity with HEK293 cells transfected with the cDNA for mouse mitochondrial ICDH in sense and antisense orientations, a clear inverse relationship was observed between the amount of mitochondrial ICDH expressed in target cells and their susceptibility to glycation-mediated cytotoxicity. Mitochondrial ICDH was purified by immunoprecipitation and probed with anti-hexitol-lysine antibody, which revealed increased levels of glycated ICDH in the kidneys of diabetic rats and in the lenses of diabetic patients suffering from cataracts. A decrease in ICDH activity was observed in those tissues. We also found that levels of glycated ICDH increased in IMR90 cells and rat kidney during normal aging. The glycation-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition and may contribute to various pathologies associated with the general aging process and long-term complications of diabetes. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据