4.4 Article

Adaptation in thalamic barreloid and cortical barrel neurons to periodic whisker deflections varying in frequency and velocity

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 92, 期 6, 页码 3244-3254

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00257.2004

关键词

-

资金

  1. NINDS NIH HHS [NS-19950] Funding Source: Medline

向作者/读者索取更多资源

Layer IV circuitry in the rodent whisker-to-barrel pathway transforms the thalamic input signal spatially and temporally. Excitatory and inhibitory barrel neurons display response properties that differ from each other and from their common thalamic inputs. Here we further examine thalamocortical response transformations by characterizing the responses of individual thalamic barreloid neurons and presumed excitatory and inhibitory cortical barrel neurons to periodic whisker deflections varying in frequency from 1 to 40 Hz. Both pulsatile and sinusoidal periodic stimulation of fixed deflection amplitude were used to assess stimulus-evoked adaptation of thalamocortical units (TCUs), fast-spike barrel units (FSUs: presumed inhibitory neurons), and regular-spike barrel units (RSUs: presumed excitatory neurons). Monotonic, frequency-dependent reductions in firing were observed in thalamic and cortical neurons to the second and subsequent stimuli in trains of high (pulsatile)- and low (sinusoidal)-velocity deflections. RSUs and FSUs adapted substantially more than their thalamic input neurons, and at all frequencies, FSUs fired at higher rates than the other two cell types. For example at 40 Hz, response magnitudes of TCUs decreased by 34%, FSUs by 72%, and RSUs by 78%. Across frequencies, RSUs and FSUs displayed more cycle-by-cycle entrainment and phase-locked responses for (high velocity) pulsatile than (lower velocity) sinusoidal deflections; for TCUs, phase-locking was equivalent for both stimuli, but entrainment was higher for sinusoidal deflections. Strong feed-forward inhibition, in conjunction with synaptic depression, renders the firing of barrel neurons sparse but temporally faithful to the occurrence of repetitive whisker deflections, especially when they are of high velocity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据