4.4 Article

Inhibiting the Arp2/3 complex limits infection of both intracellular mature vaccinia virus and primate lentiviruses

期刊

MOLECULAR BIOLOGY OF THE CELL
卷 15, 期 12, 页码 5197-5207

出版社

AMER SOC CELL BIOLOGY
DOI: 10.1091/mbc.E04-04-0279

关键词

-

向作者/读者索取更多资源

Characterizing cellular factors involved in the life cycle of human immunodeficiency virus type I (HIV-1) is an initial step toward controlling replication of HIV-1. Actin polymerization mediated by the Arp2/3 complex has been found to play a critical role in some pathogens' intracellular motility. We have asked whether this complex also contributes to the viral life cycles including that of HIV-1. We have used both the acidic domains from actin-related protein (Arp) 2/3 complex-binding proteins such as the Wiscott-Aldrich syndrome protein (N-WASP) or cortactin, and siRNA directing toward Arp2 to inhibit viral infection. HIV-1, simian immunodeficiency virus (SIV), and intracellular mature vaccinia virus (IMV) were sensitive to inhibition of the Arp2/3 complex, whereas MLV, HSV-1, and adenovirus were not. Interestingly, pseudotyping HIV-1 with vesicular stomatitis virus G protein (VSV-G) overcame this inhibition. Constitutive inhibition of the Arp2/3 complex in the T-cell line H9 also blocked replication of HIV-1. These data suggested the existence of an Arp2/3 complex-dependent event during the early phase of the life cycles of both primate lentiviruses and IMV. Inhibiting the HIV-1's ability to activate Arp2/3 complex could be a potential chemotherapeutic intervention for acquired immunodeficiency syndrome (AIDS).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据