4.3 Article

Effects of non-steroid anti-inflammatory drugs in membrane bilayers

期刊

CHEMISTRY AND PHYSICS OF LIPIDS
卷 132, 期 2, 页码 157-169

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.chemphyslip.2004.06.005

关键词

NSAIDs; lipid bilayers; molecular modeling; differential scanning calorimetry; Raman spectroscopy

向作者/读者索取更多资源

The thermal effects of non-steroidal anti-inflammatory drugs (NSAIDs) meloxicam, tenoxicam, piroxicam and lornoxicam have been studied in dipalmitoylphosphatidylcholine (DPPC) membrane bilayers using neutral and acidic environments (pH 2.5). The strength of the perturbing effect of the drugs is summarized to a lowering of the main phase transition temperature and a broadening of the phase transition temperature as well as broadening or abolishment of the pretransition of DPPC bilayers. The thermal profiles in the two environments were very similar. Among the NSAIDs studied meloxicam showed the least perturbing effect. The differential scanning calorimetry results (DSC) in combination with molecular modeling studies point out that NSAIDs are characterized by amphoteric interactions and are extended between the polar and hydrophobic segments of lipid bilayers. The effects of NSAIDs in membrane bilayers were also investigated using Raman spectroscopy. Meloxicam showed a gauche:trans profile similar to DPPC bilayers while the other NSAIDs increased significantly the gauche:trans ratio. In conclusion, both techniques show that in spite of the close structural similarity of the NSAIDs studied, meloxicam appears to have the lowest membrane perturbing effects probably attributed to its highest lipophilicity. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据