4.3 Article

Zonisamide: chemistry, mechanism of action, and pharmacokinetics

期刊

SEIZURE-EUROPEAN JOURNAL OF EPILEPSY
卷 13, 期 -, 页码 S5-S9

出版社

W B SAUNDERS CO LTD
DOI: 10.1016/j.seizure.2004.04.016

关键词

zonisamide; epilepsy; chemistry; pharmacokinetics; mechanism of action

向作者/读者索取更多资源

Zonisamide is a synthetic 1,2-benzisoxazole-3-methanesulfonamide with anticonvulsant properties. The sulfamoyl group on zonisamide was expected to suppress seizures in a manner similar to another sulfonamide analogue, acetazolamide, through inhibition of carbonic anhydrase. However, this does not appear to be the primary mechanism of action since zonisamide requires much higher doses than acetazolamide to achieve equivalent titration in vivo. Studies with cultured neurons indicate that zonisamide blocks repetitive firing of voltage-sensitive sodium channels and reduces voltage- sensitive T-type calcium currents without affecting L-type calcium currents. Its dual mechanism of action may explain its efficacy in patients resistant to other antiepileptic drugs (AEDs). Zonisamide has a pharmacokinetic profile favorable for clinical use. It is rapidly and completely absorbed and has a Long half-life (63-69h in healthy volunteers) which allows twice-daily, or even once-daily, dosing. Zonisamide is not highly bound to plasma proteins. Consequently, it does not affect protein binding of other highly protein-bound AEDs. Furthermore, zonisamide does not induce its own metabolism and does not induce liver enzymes. However, since zonisamide is metabolized by cytochrome P450, liver enzyme-inducing AEDs will increase zonisamide clearance, and dosage adjustments may be necessary when it is used in combination with certain AEDs. (C) 2004 BEA Trading Ltd. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据