4.6 Article

Bistability of the thermohaline circulation identified through comprehensive 2-parameter sweeps of an efficient climate model

期刊

CLIMATE DYNAMICS
卷 23, 期 7-8, 页码 761-777

出版社

SPRINGER
DOI: 10.1007/s00382-004-0474-1

关键词

-

资金

  1. Natural Environment Research Council [NER/T/S/2002/00462] Funding Source: researchfish

向作者/读者索取更多资源

The effect of changes in zonal and meridional atmospheric moisture transports on Atlantic overturning is investigated. Zonal transports are considered in terms of net moisture export from the Atlantic sector. Meridional transports are related to the vigour of the global hydrological cycle. The equilibrium thermohaline circulation (THC) simulated with an efficient climate model is strongly dependent on two key parameters that control these transports: an anomaly in the specified Atlantic-Pacific moisture flux (DeltaF(a)) and atmospheric moisture diffusivity (K-q). In a large ensemble of spinup experiments, the values of DeltaF(a) and K-q are varied by small increments across wide ranges, to identify sharp transitions of equilibrium THC strength in a 2-parameter space (between Conveyor On and Off states). Final states from this ensemble of simulations are then used as the initial states for further such ensembles. Large differences in THC strength between ensembles, for identical combinations of DeltaF(a) and K-q, reveal the coexistence of two stable THC states (Conveyor On and Off)-i.e. a bistable regime. In further sensitivity experiments, the model is forced with small. temporary freshwater perturbations to the mid-latitude North Atlantic, to establish the minimum perturbation necessary for irreversible THC collapse in this bistable regime. A threshold is identified in terms of the forcing duration required. The model THC, in a Conveyor On state, irreversibly collapses to a Conveyor Off state under additional freshwater forcing of just 0.1 Sv applied for around 100 years. The irreversible collapse Is primarily due to a positive feedback associated with suppressed convection and reduced surface heat loss in the sinking region. Increased atmosphere-to-ocean freshwater flux. under a collapsed Conveyor, plays a secondary role.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据