4.2 Article

Cullin-3 regulates pattern formation, external sensory organ development and cell survival during Drosophila development

期刊

MECHANISMS OF DEVELOPMENT
卷 121, 期 12, 页码 1495-1507

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.mod.2004.07.007

关键词

cullin; SCF; protein degradation; Ci stability; Drosophila wing development

资金

  1. NINDS NIH HHS [NS36570] Funding Source: Medline

向作者/读者索取更多资源

Ubiquitin-mediated proteolysis regulates the steady-state abundance of proteins and controls cellular homoeostasis by abrupt elimination of key effector proteins. A multienzyme system targets proteins for destruction through the covalent attachment of a multiubiquitin chain. The specificity and timing of protein ubiquitination is controlled by ubiquitin ligases, such as the Skp1-Cullin-F box protein complex. Cullins are major components of SCF complexes, and have been implicated in degradation of key regulatory molecules including Cyclin E, beta-catenin and Cubitus interruptus. Here, we describe the genetic identification and molecular characterisation of the Drosophila Cullin-3 homologue. Perturbation of Cullin-3 function has pleiotropic effects during development, including defects in external sensory organ development, pattern formation and cell growth and survival. Loss or overexpression of Cullin-3 causes an increase or decrease, respectively, in external sensory organ formation, implicating Cullin-3 function in regulating the commitment of cells to the neural fate. We also find that Cullin-3 function modulates Hedgehog signalling by regulating the stability of full-length Cubitus interruptus (0155). Loss of Cullin-3 function in eye discs but not other imaginal discs promotes cell-autonomous accumulation of Ci155. Conversely, overexpression of Cullin-3 results in a cell-autonomous stabilisation of Ci155 in wing, haltere and leg, but not eye, imaginal discs suggesting tissue-specific regulation of Cullin-3 function. The diverse nature of Cullin-3 phenotypes highlights the importance of targeted proteolysis during Drosophila development. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据