4.7 Article

Cellular mechanisms associated with spontaneous and ciliary neurotrophic factor-cAMP-induced survival and axonal regeneration of adult retinal ganglion cells

期刊

JOURNAL OF NEUROSCIENCE
卷 24, 期 48, 页码 10806-10815

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3532-04.2004

关键词

ciliary neurotrophic factor; cAMP; protein kinase A; phosphotidylinositol 3-kinase; mitogen-activated protein kinase; Janus kinase

向作者/读者索取更多资源

We have shown previously that intraocular elevation of cAMP using the cAMP analog 8-(4-chlorophenylthio)-cAMP (CPT-cAMP) failed to promote axonal regeneration of axotomized adult retinal ganglion cells (RGCs) into peripheral nerve (PN) grafts but significantly potentiated ciliary neurotrophic factor (CNTF)-induced axonal regeneration. Using the PN graft model, we now examine the mechanisms underlying spontaneous and CNTF/CPT-cAMP-induced neuronal survival and axonal regrowth. We found that blockade of the cAMP pathway executor protein kinase A (PKA) using the cell-permeable inhibitor KT5720 did not affect spontaneous survival and axonal regeneration but essentially abolished the CNTF/CPT-cAMP-induced RGC survival and axonal regeneration. Blockade of CNTF signaling pathways such as phosphotidylinositol 3-kinase (PI3K)/akt by 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one(LY294002), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) by 2-(2-diamino-3-methoxyphenyl-4H-1-benzopyran-4-one (PD98059), or Janus kinase (JAK)/signal transducer and activators of transcription (STAT3) by tyrphostin AG490 also blocked the CNTF/CPT-cAMP-dependent survival and regeneration effects. PKA activity assay and Western blots showed that KT5720, LY294002, and PD98059 almost completely inhibited PKA, PI3K/akt, and MAPK/ERK signal transduction, respectively, whereas AG490 substantially decreased JAK/STAT3 signal transduction. Intraocular injection of CPT-cAMP resulted in a small PKA-dependent increase in CNTF receptor alpha mRNA expression in the retinas, an effect that may facilitate CNTF action on survival and axonal regeneration. Surprisingly, in the absence of CNTF/CPT-cAMP, LY294002, PD98059, and AG490, but not KT5720, significantly enhanced spontaneous RGC survival, suggesting differential roles of these pathways in RGC survival under different conditions. Our data suggest that CNTF/CPT-cAMP-induced RGC survival and axonal regeneration are a result of multiple pathway actions, with PKA as an essential component, but that these pathways can function in an antagonistic manner under different conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据