4.6 Article

Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator

期刊

JOURNAL OF APPLIED PHYSICS
卷 96, 期 11, 页码 6431-6438

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1810205

关键词

-

向作者/读者索取更多资源

We demonstrate controllable shift of the threshold voltage and the turn-on voltage in pentacene thin film transistors and rubrene single crystal field effect transistors (FET) by the use of nine organosilanes with different functional groups. Prior to depositing the organic semiconductors, the organosilanes were applied to the SiO2 gate insulator from solution and form a self-assembled monolayer (SAM). The observed shifts of the transfer characteristics range from -2 to 50 V and can be related to the surface potential of the layer next to the transistor channel. Concomitantly the mobile charge carrier concentration at zero gate bias reaches up to 4x10(12)/cm(2). In the single crystal FETs the measured transfer characteristics are also shifted, while essentially maintaining the high quality of the subthreshold swing. The shift of the transfer characteristics is governed by the built-in electric field of the SAM and can be explained using a simple energy level diagram. In the thin film devices, the subthreshold region is broadened, indicating that the SAM creates additional trap states, whose density is estimated to be of order 1x10(12)/cm(2). (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据