4.7 Review

Cytonuclear coevolution: the genomics of cooperation

期刊

TRENDS IN ECOLOGY & EVOLUTION
卷 19, 期 12, 页码 645-653

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tree.2004.10.003

关键词

-

向作者/读者索取更多资源

Without mitochondria we would be in big trouble, and there would be a global biological energy crisis if it were not for chloroplasts. Fortunately, genomic evolution over the past two billion years has ensured that the functions of these key organelles are with us to stay. Whole-genome analyses have not only proven that mitochondria and chloroplasts are descended from formerly free-living bacteria, but have also shown that it is difficult to define eukaryotes without reference to the fusion and coevolution of host and endosymbiont genomes. Here, we review how the macro- and micro-evolutionary insights that follow from the genomics of cytonuclear interactions are uniting molecular evolution, structural proteomics, population genetics and problems in aging and disease. Our goals are to clarify the coevolutionary events that have governed nuclear and organelle evolution, and to encourage further critical analyses of these interactions as problems in the study of co-adapted gene complexes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据