4.5 Article

Localization of superoxide dismutases and hydrogen peroxide in legume root nodules

期刊

MOLECULAR PLANT-MICROBE INTERACTIONS
卷 17, 期 12, 页码 1294-1305

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI.2004.17.12.1294

关键词

-

向作者/读者索取更多资源

Superoxide dismutases (SODs) catalyze the dismutation of superoxide radicals to O-2 and H2O2 and thus represent a primary line of antioxidant defense in all aerobic organisms. H2O2 is a signal molecule involved in the plant's response to pathogen attack and other stress conditions as well as in undulation. In this work, we have tested the hypothesis that SODs are a source of H2O2 in indeterminate alfalfa (Medicago sativa) and pea (Pisum sativum) nodules. The transcripts and proteins of the major SODs of nodules were localized by in situ RNA hybridization and immunogold electron microscopy, respectively, whereas H2O2 was localized cytochemically by electron microscopy of cerium-perfused nodule tissue. The transcript and protein of cytosolic CuZnSOD are most abundant in the meristem (I) and invasion (II) zones, interzone II-III, and distal part of the N-2-fixing zone (III), and those of MnSOD in zone III, especially in the infected cells. At the subcellular level, CuZnSOD was found in the infection threads, cytosol adjacent to cell walls, and apoplast, whereas MnSOD was in the bacteroids, bacteria within infection threads, and mitochondria. The distinct expression pattern of CuZnSOD and MnSOD suggests specific roles of the enzymes in nodules. Large amounts of H2O2 were found at the same three nodule sites as CuZnSOD but not in association with MnSOD. This colocalization led us to postulate that cytosolic CuZnSOD is a source of H2O2 in nodules. Furthermore, the absence or large reduction of H2O2 in nodule tissue preincubated with enzyme inhibitors (cyanide, azide, diphenyleneiodonium, diethyldithiocarbamate) provides strong support to the hypothesis that at least some of the H2O2 originates by the sequential operation of an NADPH oxidase-like enzyme and CuZnSOD. Results also show that there is abundant H2O2 associated with degrading bacteroids; in the senescent zone (IV), which reflects the oxidative stress ensued during nodule senescence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据