4.8 Article

Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover

期刊

PLANT PHYSIOLOGY
卷 136, 期 4, 页码 4104-4113

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.104.051540

关键词

-

向作者/读者索取更多资源

Cotton fibers are single-celled hairs that elongate to several centimeters long from the seed coat epidermis of the tetraploid species (Gossypium hirsutum and Gossypium barbadense). Thus, cotton fiber is a unique system to study the mechanisms of rapid cell expansion. Previous work has shown a transient closure of plasmodesmata during fiber elongation (Y.-L. Ruan, D.J. Llewellyn, R.T. Furbank [2001] Plant Cell 13: 47-60). To examine the importance of this closure in fiber elongation, we compared the duration of the plasmodesmata closure among different cotton genotypes differing in fiber length. Confocal imaging of the membrane-impermeant fluorescent molecule carboxyfluorescein revealed a genotypic difference in the duration of the plasmodesmata closure that positively correlates with fiber length among three tetraploid genotypes and two diploid progenitors. In all cases, the closure occurred at the rapid phase of elongation. Aniline blue staining and immunolocalization studies showed that callose deposition and degradation at the fiber base correlates with the timing of plasmodesmata closure and reopening, respectively. Northern analyses showed that the expression of a fiber-specific beta-1,3-glucanase gene, GhGluc1, was undetectable when callose was deposited at the fiber base but became evident at the time of callose degradation. Genotypically, the level of GhGluc1 expression was high in the short fiber genotype and weak in the intermediate and long fiber genotypes. The data provide genotypic and developmental evidence that (1) plasmodesmata closure appears to play an important role in elongating cotton fibers, (2) callose deposition and degradation may be involved in the plasmodesmata closure and reopening, respectively, and (3) the expression of GhGluc1 could play a role in this process by degrading callose, thus opening the plasmodesmata.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据