4.6 Article Proceedings Paper

Transparent manganite films as hole injectors for organic light emitting diodes

期刊

JOURNAL OF LUMINESCENCE
卷 110, 期 4, 页码 384-388

出版社

ELSEVIER
DOI: 10.1016/j.jlumin.2004.08.036

关键词

light-emitting diodes; organic semiconductors; thin films; manganites; spin injection

类别

向作者/读者索取更多资源

Organic light-emitting diodes (OLEDs) are nowadays one of the most attractive devices based on organic semiconductors due to their successful application in the display technology. Electroluminescence in OLEDs is mainly governed by the fluorescence from excited singlet states, which have large transition probabilities providing the major radiative pathway. The forbidden triplet state emission can be activated by increasing spin-orbit coupling via dye doping. The singlet-triplet exciton formation statistics is usually given by 1:3 partition due to the quantum constrains. Injection of carriers with finite spin polarisation should influence and modify the recombination statistics and can be used for tuning of the device efficiency. In this context, the development of a new class of electrodes able to guarantee both efficient charge and spin injection becomes of paramount importance. We show that strongly spin polarised colossal magneto resistance manganite La0.7Sr0.3MnO3 (LSMO) can successfully substitute conventional ITO electrodes in OLEDs. Highly transparent, metallic and ferromagnetic LSMO layers were used in combination with standard Al and spin polarised Co top electrodes. Electrical and optical characterisations of the OLEDs with spin polarised electrodes indicate the applicability of the new manganite electrodes for organic light-emitting devices. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据