4.7 Article

Abrupt grain boundary melting in ice

期刊

PHYSICAL REVIEW E
卷 70, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.061606

关键词

-

向作者/读者索取更多资源

The effect of impurities on the grain boundary melting of ice is investigated through an extension of Derjaguin-Landau-Verwey-Overbeek theory, in which we include retarded potential effects in a calculation of the full frequency-dependent van der Waals and Coulombic interactions within a grain boundary. At high dopant concentrations, the classical solutal effect dominates the melting behavior. However, depending on the amount of impurity and the surface charge density, as temperature decreases, the attractive tail of the dispersion force interaction begins to compete effectively with the repulsive screened Coulomb interaction. This leads to a film-thickness/temperature curve that changes depending on the relative strengths of these interactions and exhibits a decrease in the film thickness with increasing impurity level. More striking is the fact that at very large film thicknesses, the repulsive Coulomb interaction can be effectively screened, leading to an abrupt reduction to zero film thickness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据