4.7 Article

Spin-orbit resonance and the evolution of compact binary systems

期刊

PHYSICAL REVIEW D
卷 70, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.70.124020

关键词

-

向作者/读者索取更多资源

Starting with a post-Newtonian description of compact binary systems, we derive a set of equations that describes the evolution of the orbital angular momentum and both spin vectors during inspiral. We find regions of phase space that exhibit resonance behavior, characterized by small librations of the spin vectors around a fixed orientation. Because of the loss of energy and orbital angular momentum through radiation reaction, systems can eventually be captured into these resonance orientations. By investigating the long-term evolution of compact binaries with a variety of initial conditions, we find that the distribution in parameter space can be strongly affected by resonance captures. This has the effect of significantly reducing the size of search space for gravitational wave sources, in turn improving the chances of detecting such sources through methods of template matching. Furthermore, by calculating the expected spin distribution at the end of the inspiral phase, we can predict what are the most likely initial conditions for the plunge phase, a result of great interest for numerical relativity calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据