4.5 Article

Habitat-specific nitrogen dynamics in New Zealand streams containing native or invasive fish

期刊

ECOSYSTEMS
卷 7, 期 8, 页码 777-792

出版社

SPRINGER
DOI: 10.1007/s10021-004-0024-z

关键词

stable isotope; tracer; N-15; trophic cascade; pool; riffle; trout; Salmo; Galaxias; ammonium

类别

向作者/读者索取更多资源

Streams are important sites of nutrient transport and transformation in the landscape but little is known about the way in which individual taxa or individual habitats (riffles and pools) influence nutrient dynamics within stream reaches. We used 5-week additions of a stable isotope ((NH4Cl)-N-15) tracer to investigate nitrogen dynamics in pools and riffles of two New Zealand streams, one with native fish (Galaxias depressiceps) and the other with invasive brown trout (Salmo trutta). In New Zealand, brown trout initiate a trophic cascade leading to increased algal biomass that we predicted would lead to higher N uptake and retention. Uptake of NO3, but not ammonium, was greater in the trout stream. Rather than causing a large increase in N demand, trout may induce a reallocation of N uptake and retention among food web compartments in different habitats. The largest differences between streams were apparent in riffles, where most uptake and retention of N occurred. In the trout stream, uptake rate by epilithon in riffles was more than six times greater than uptake rates of any other compartment. In the Galaxias stream, several compartments in both habitats had similar uptake rates. Epilithon also accounted for a larger percentage of the N-15 retained in the study reach in the trout stream (51%) than the Galaxias stream (34%). Our results show that an individual predatory taxon (in our case an invader) can influence N dynamics in streams but that the magnitude and location of the impact depend on a range of abiotic and biotic factors involved in N dynamics in streams.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据