4.2 Article

The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis

期刊

GENES TO CELLS
卷 9, 期 12, 页码 1199-1211

出版社

WILEY
DOI: 10.1111/j.1365-2443.2004.00798.x

关键词

-

向作者/读者索取更多资源

Cytokinesis is the critical step during which daughter cells are separated. We showed previously that a protein complex that consists of NACK1 (and NACK2) kinesin-like protein and NPK1 MAPKKK and its substrate NQK1 MAPKK are required for progression of cytokinesis in Nicotiana tabacum. The genome of Arabidopsis thaliana encodes homologues of NACK1 and NACK2, namely, AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2, respectively. Loss-of-function mutations in AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 result in the occasional failure of somatic and male-meiotic cytokinesis, respectively. However, it is likely that these genes function redundantly to some extent in somatic tissues and female gametogenesis. We describe the phenotypes of Arabidopsis plants that have mutations in both the AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes. These phenotypes suggest that the two genes are essential during both male and female gametogenesis. Female gametes with atnack1 atnack2 double mutations failed to cellularize and to generate a central cell, synergids and the egg cells. Male gametes with atnack1 atnack2 mutations were also not transmitted to the next generation. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes for kinesin-like proteins have overlapping functions that are essential for gametogenetic cytokinesis. They appear to be essential components of a MAP kinase cascade that promotes cytokinesis of plant cells in both gametophytic (haploid) and sporophytic (diploid) proliferation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据