4.5 Article

Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00241.2004

关键词

air pollution; epidermal growth factor receptor; mitogen-activated protein kinase; cellular proliferation

向作者/读者索取更多资源

Exposure to ambient ultrafine particles induces airway inflammatory reactions and tissue remodeling. In this experiment, to determine whether ultrafine carbon black (ufCB) affects proliferation of airway epithelium and, if so, what the mechanism of action is, we studied human primary bronchial epithelial cell cultures. Incubation of cells in the serum-free medium with ufCB increased incorporations of [H-3] thymidine and [H-3] leucine into cells in a time- and dose-dependent manner. This effect was attenuated by Cu- and Zn-containing superoxide dismutase (Cu/Zn SOD) and apocynin, an inhibitor of NADPH oxidase, and completely inhibited by pretreatment with the epidermal growth factor receptor (EGF-R) tyrosine kinase inhibitors AG-1478 and BIBX-1382, and the mitogen-activated protein kinase kinase inhibitor PD-98059. Transfection of a dominant-negative mutant of H-Ras likewise abolished the effect ufCB. Stimulation with ufCB also induced processing of membrane-anchored proheparin-binding (HB)-EGF, release of soluble HB-EGF into the medium, association of phosphorylated EGF-R and Shc with glutathione-S-transferase-Grb2 fusion protein, and phosphorylation of extracellular signal-regulated kinase (ERK). Pretreatment with AG1478, [Glu(52)] Diphtheria toxin, a specific inhibitor of HB-EGF, neutralizing HB-EGF antibody, Cu/Zn SOD, and apocynin each inhibited ufCB-induced ERK activation. These results suggest that ufCB causes oxidative stress-mediated proliferation of airway epithelium, involving processing of HB-EGF and the concomitant activation of EGF-R and ERK cascade.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据