4.5 Review

Organic polymer monoliths as stationary phases for capillary HPLC

期刊

JOURNAL OF SEPARATION SCIENCE
卷 27, 期 17-18, 页码 1419-1430

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/jssc.200401825

关键词

polymeric monoliths; preparation; modification; application; stationary phase; separation; HPLC; capillary; column

资金

  1. NIGMS NIH HHS [GM-48364] Funding Source: Medline

向作者/读者索取更多资源

Modern rigid porous polymer monoliths were conceived as a new class of stationary phases in classical columns in the early 1990s and later extended to the capillary format. These monolithic materials are typically prepared using a simple molding process carried out within the confines of the capillary. Polymerization of a mixture comprising monomers, initiator, and porogenic solvent affords macroporous materials with large through-pores that enable applications in a rapid flow-through mode. Since all the mobile phase must flow through the monolith, convection considerably accelerates mass transport within the monolithic separation medium and improves the separations. As a result, monolithic columns perform well even at very high flow rates. Various mechanisms including thermally and UV initiated free radical polymerization as well as ring opening metathesis copolymerizations were demonstrated for the preparation of monolithic capillary columns. The versatility of these preparation techniques was demonstrated by their use with hydrophobic (styrene, divinylbenzene, butyl methacrylate, ethylene dimethacrylate), hydrophilic (2-hydroxyethyl methacrylate, methacrylamide, methylenebisacrylamide), ionizable (vinylsulfonic acid, 2-acrylamido-2-methyl-propanesulfonic acid), and tailor-made (norborn-2-ene, 1,4,4a,5,8,8a-hexahydro-1,4,5,8-exo,endodimethanonaphthalene) monomers. Variation of polymerization conditions enables control of the porous properties of the monolith over a broad range and mediates the hydrodynamic properties of the monolithic columns. The applications of polymer-based monolithic capillary columns are demonstrated for numerous separations in the muHPLC mode.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据