4.7 Article

Acute effects of glucose and insulin on vascular endothelium

期刊

DIABETOLOGIA
卷 47, 期 12, 页码 2059-2071

出版社

SPRINGER
DOI: 10.1007/s00125-004-1586-1

关键词

endothelium; Na+/Ca2+; Na+/glucose cotransporter-1; nitric oxide; vasodilation

向作者/读者索取更多资源

Aims/hypothesis. Chronic exposure to high concentrations of glucose has consistently been demonstrated to impair endothelium-dependent, nitric oxide (NO)-mediated vasodilation. In contrast, several clinical investigations have reported that acute exposure to high glucose, alone or in combination with insulin, triggers vasodilation. The aim of this study was to examine whether elevated glucose itself stimulates endothelial NO formation or enhances insulin-mediated endothelial NO release. Methods. We measured NO release and vessel tone ex vivo in porcine coronary conduit arteries (PCAs). Intracellular Ca2+ was monitored in porcine aortic endothelial cells (PAECs) by fura-2 fluorescence. Expression of the Na+/glucose cotransporter-1 (SGLT-1) was assayed in PAECs and PCA endothelium by RT-PCR. Results. Stimulation of PCAs with D-glucose, but not the osmotic control L-glucose, induced a transient increase in NO release (EC50 approximate to 10 mmol/l), mediated by a rise in intracellular Ca2+ levels due to an influx from the extracellular space. This effect was abolished by inhibitors of the plasmalemmal Na+/Ca2+ exchanger ( dichlorobenzamil) and the SGLT-1 ( phlorizin), which was found to be expressed in aortic and coronary endothelium. Alone, D-glucose did not relax PCA, but did augment the effect of insulin on NO release and vasodilation. Conclusions/interpretation. An increased supply of extracellular D-glucose appears to enhance the activity of the endothelial isoform of nitric oxide synthase by increasing intracellular Na+ concentrations via SGLT-1, which in turn stimulates an extracellular Ca2+ influx through the Na+/ Ca2+ exchanger. This mechanism may be responsible for glucose-enhanced, insulin-dependent increases in tissue perfusion ( including coronary blood-flow), thus accelerating glucose extraction from the blood circulation to limit the adverse vascular effects of prolonged hyperglycaemia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据