4.6 Article

Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors

期刊

APPLIED PHYSICS LETTERS
卷 92, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2839330

关键词

-

向作者/读者索取更多资源

Results of quantum mechanical simulations of the influence of edge disorder on transport in graphene nanoribbon metal-oxide-semiconductor field-effect transistors (MOSFETs) are reported. The addition of edge disorder significantly reduces ON-state currents and increases OFF-state currents, and introduces wide variability across devices. These effects decrease as ribbon widths increase and as edges become smoother. However, the band gap decreases with increasing width, thereby increasing the band-to-band tunneling mediated subthreshold leakage current even with perfect nanoribbons. These results suggest that without atomically precise edge control during fabrication, MOSFET performance gains through use of graphene will be difficult to achieve in complementary MOS applications. (c) 2008 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据