4.6 Article

Ocean wave slope observations using radar backscatter and laser altimeters

期刊

JOURNAL OF PHYSICAL OCEANOGRAPHY
卷 34, 期 12, 页码 2825-2842

出版社

AMER METEOROLOGICAL SOC
DOI: 10.1175/JPO2663.1

关键词

-

向作者/读者索取更多资源

Combination of laser and radar aboard an aircraft is used to directly measure long gravity wave surface tilting simultaneously with nadir-viewing microwave backscatter from the sea surface. The presented dataset is extensive, encompassing varied wind conditions over coastal and open-ocean wave regimes. Laser-derived slope statistics and Ka-band (36 GHz) radar backscatter are detailed separately to document their respective variations versus near-surface wind speed. The slope statistics, measured for lambda > 1-2 m, show good agreement with Cox and Munk's oil-slickened sea measurements. A notable exception is elevated distribution peakedness and an observed wind dependence in this likely proxy for nonlinear wave-wave interactions. Aircraft Ka-band radar data nearly mimic Ku-band satellite altimeter observations in their mean wind dependence. The present calibrated radar data, along with relevant observational and theoretical studies, suggest a large (25 dB) bias in previous Ka-band results. Next, wave-diverse inland, coastal, and open-ocean observations are contrasted to show wind-independent long-wave slope variance changes of a factor of 2-3, always increasing as one heads to sea. Combined long-wave and radar data demonstrate that this long-wave tilt field variability is largely responsible for radar backscatter variations observed at a given wind speed, particularly at wind speeds below 5-7 m s(-1). Results are consistent with, and provide quantititative support for, recent satellite altimeter studies eliciting signatures of long-wave impacts resident in the radar backscatter. Under a quasi-optical scattering assumption, the results illustrate long-wave control on the variance of the total mean square slope parameter due to changes in the directional long-wave spectrum, with high-wavenumbers being relatively unaffected in a mean sense. However, further analysis suggests that for winds above 7 m s(-1) the high-wavenumber subrange also varies with change in the longer wave field slope and/or energy, the short gravity wave roughness being measurably greater for smoother

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据