4.7 Article

Mean evaporation and condensation coefficients based on energy dependent condensation probability

期刊

PHYSICAL REVIEW E
卷 70, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.70.061605

关键词

-

向作者/读者索取更多资源

A generalization of the classical Hertz-Knudsen and Schrage laws for the evaporation mass and energy fluxes at a liquid-vapor interface is derived from kinetic theory and a simple model for a velocity dependent condensation coefficient. These expressions, as well as the classical laws and simple phenomenological expressions, are then considered for the simulation of recent experiments [G. Fang and C. A. Ward, Phys. Rev. E 59, 419 (1999)]. It is shown that mean condensation and evaporation coefficients in the mass flow influence the results only if they are small compared to unity and that the expression for evaporation mass flow determines the temperature of the liquid. Moreover, it is shown that the expression for evaporation energy flow plays the leading role in determining the interface temperature jump, which can be obtained in good agreement with the experiment from the generalized kinetic theory model and phenomenological approaches, but not from the classical kinetic-theory-based Hertz-Knudsen and Schrage laws. Analytical estimates show that the interface temperature jump depends strongly on the temperature gradient of the vapor just in front of the interface, which explains why much larger temperature jumps are observed in spherical geometry and the experiments as compared to planar settings.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据