4.7 Article

Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear

期刊

JOURNAL OF NEUROSCIENCE
卷 24, 期 49, 页码 11148-11159

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.2662-04.2004

关键词

hair cell; conductance; mechanotransduction; development; utricle; vestibular

资金

  1. NIDCD NIH HHS [DC05439, DC006183, R01 DC005439, R56 DC005439, R01 DC005439-03, R03 DC006183] Funding Source: Medline

向作者/读者索取更多资源

How and when sensory hair cells acquire the remarkable ability to detect and transmit mechanical information carried by sound and head movements has not been illuminated. Previously, we defined the onset of wmechanotransduction in embryonic hair cells of mouse vestibular organs to be at approximately embryonic day 16 (E16). Here we examine the functional maturation of hair cells in intact sensory epithelia excised from the inner ears of embryonic mice. Hair cells were studied at stages between E14 and postnatal day 2 using the whole-cell, tight-seal recording technique. We tracked the developmental acquisition of four voltage-dependent conductances. We found a delayed rectifier potassium conductance that appeared as early as E14 and grew in amplitude over the subsequent prenatal week. Interestingly, we also found a low-voltage-activated potassium conductance present at E18, similar to1 week earlier than reported previously. An inward rectifier conductance appeared at approximately E15 and doubled in size over the next few days. We also noted transient expression of a voltage-gated sodium conductance that peaked between E16 and E18 and then declined to near zero at birth. We propose that hair cells undergo a stereotyped developmental pattern of ion channel acquisition and that the precise pattern may underlie other developmental processes such as synaptogenesis and functional differentiation into type I and type II hair cells. In addition, we find that the developmental acquisition of basolateral conductances shapes the hair cell receptor potential and therefore comprises an important step in the signal cascade from mechanotransduction to neurotransmission.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据