4.6 Article

Gas-phase zwitterions in the absence of a net charge

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 108, 期 49, 页码 10861-10864

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp047369l

关键词

-

向作者/读者索取更多资源

The ground state for neutral, isolated molecules in the gas phase can be zwitterionic under appropriate conditions. Quantum chemical calculations show that increasing the basicity of the basic component of a zwitterion leads to enhanced stability for the charge-separated state, which can lead to a ground-state zwitterion. Density functional theory calculations show that methylation of the side chain of arginine is sufficient to induce a ground-state zwitterion. The results for the stepwise methylation of arginine are given, and clearly illustrate enhanced zwitterion stabilization with increasing basicity. In protonated systems, guanidinylation of the N-terminus of arginine yields a salt bridge or charge-stabilized zwitterion structure. The enhanced basicity of guanidino versus amino groups is responsible for the charge separation in this case, which is not observed to be the ground state for protonated arginine itself. These results indicate that charge separation can be favorable in the gas phase and are discussed in light of future experimental efforts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据