4.7 Article

Analysis of array CGH data:: from signal ratio to gain and loss of DNA regions

向作者/读者索取更多资源

Motivation: Genomic DNA regions are frequently lost or gained during tumor progression. Array Comparative Genomic Hybridization (array CGH) technology makes it possible to assess these changes in DNA in cancers, by comparison with a normal reference. The identification of systematically deleted or amplified genomic regions in a set of tumors enables biologists to identify genes involved in cancer progression because tumor suppressor genes are thought to be located in lost genomic regions and oncogenes, in gained regions. Array CGH profiles should also improve the classification of tumors. The achievement of these goals requires a methodology for detecting the breakpoints delimiting altered regions in genomic patterns and assigning a status (normal, gained or lost) to each chromosomal region. Results: We have developed a methodology for the automatic detection of breakpoints from array CGH profile, and the assignment of a status to each chromosomal region. The breakpoint detection step is based on the Adaptive Weights Smoothing (AWS) procedure and provides highly convincing results: our algorithm detects 97, 100 and 94% of breakpoints in simulated data, karyotyping results and manually analyzed profiles, respectively. The percentage of correctly assigned statuses ranges from 98.9 to 99.8% for simulated data and is 100% for karyotyping results. Our algorithm also outperforms other solutions on a public reference dataset.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据