4.4 Article

Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding

期刊

BIOCHEMISTRY
卷 43, 期 49, 页码 15540-15549

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi048284d

关键词

-

向作者/读者索取更多资源

Streptococcus pyogenes, an important pathogen in humans, secretes an IgG specific endopeptidase named IdeS. To elucidate the mechanism that is responsible for this specificity, we have here characterized the activity of IdeS in detail. Both gamma chains of human IgG or its Fc fragment were cleaved in the hinge region after Gly236 by IdeS, but other proteins or synthetic peptides containing sequences such as the P-4-P-1 segment in the IgG cleavage site, or long peptides resembling the IgG hinge, were not hydrolyzed at all. This is likely due to a second binding site interacting with the Fc part of IgG. The lack of IdeS activity on peptide substrates necessitated the development of an assay with IgG as the substrate for kinetic studies. IdeS showed a sigmoidal velocity curve at physiological IgG concentrations, and a declining enzyme rate at higher IgG concentrations. This atypical velocity curve suggests product inhibition and/or allosteric control, which again indicates the presence of an exosite involved in substrate binding. The pseudoequilibrium constant for Ides hydrolysis of IgG was 90 muM. The enzyme exhibited activity in the pH range of 5.1-7.6, with an optimum at pH 6.6. IdeS was stable above pH 10 but not at acidic pH. It exhibited an activity maximum around 37 degreesC and a decreased thermal stability at 42 degreesC. Iodoacetate and iodoacetamide inhibited IdeS, as expected for a cysteine protease, and biochemical evidence verified this classification. E-64 and chicken cystatin, specific inhibitors of family C1 and C13 cysteine proteases, were without effect on enzyme activity, as were class specific serine, aspartic, and metallo protease inhibitors. No significant similarities were found in protein sequence comparisons with known enzyme families, suggesting that Ides represents a novel family of cysteine proteases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据