4.7 Article Proceedings Paper

Modeling of mechanical twinning in a high manganese content austenitic steel

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2004.05.038

关键词

TWIP effect; critical stress; twin interactions; stacking fault energy

向作者/读者索取更多资源

We propose a 2D simulation of the formation of twins, in correlation with their microstructure observed in a Fe-22 wt.% Mn-0.6 wt.% C austenitic steel deformed at room temperature. TEM observations show that microtwins of a few tens of nanometer thick develop in between grain and twin boundaries, and are stored into stacks of a few tenth of micron wide. We first use a model of the emission of an isolated microtwin, based on the critical stress required to develop successive Shockley dislocation loops along parallel slip planes. As the first loop drags a stacking fault, while the following ones only thicken it, when the critical stress is reached, several dislocations are emitted until the backstress shuts down the source at the equilibrium state. After, the twin thickens stably with the increase of the applied stress. The same model is reproduced to simulate numerically the simultaneous formation of interacting microtwins in a stack. We give a general law correlating the average thickness of the twins with the stacking fault energy, their length, their number and their distance. The thickness is a key parameter in our physically based model presented during this congress. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据