4.7 Article

HEAT:: High accuracy extrapolated ab initio thermochemistry

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 121, 期 23, 页码 11599-11613

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1811608

关键词

-

向作者/读者索取更多资源

A theoretical model chemistry designed to achieve high accuracy for enthalpies of formation of atoms and small molecules is described. This approach is entirely independent of experimental data and contains no empirical scaling factors, and includes a treatment of electron correlation up to the full coupled-cluster singles, doubles, triples and quadruples approach. Energies are further augmented by anharmonic zero-point vibrational energies, a scalar relativistic correction, first-order spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The accuracy of the approach is assessed by several means. Enthalpies of formation (at 0 K) calculated for a test suite of 31 atoms and molecules via direct calculation of the corresponding elemental formation reactions are within 1 kJ mol(-1) to experiment in all cases. Given the quite different bonding environments in the product and reactant sides of these reactions, the results strongly indicate that even greater accuracy may be expected in reactions that preserve (either exactly or approximately) the number and types of chemical bonds. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据