4.6 Article

Oxygen nonstoichiometry and dielectric evolution of BaTiO3.: Part II -: insulation resistance degradation under applied dc bias

期刊

JOURNAL OF APPLIED PHYSICS
卷 96, 期 12, 页码 7500-7508

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1809268

关键词

-

向作者/读者索取更多资源

The microchemical and microstructural origins of insulation-resistance degradation in BaTiO3-based capacitors are studied by complementary impedance spectroscopy and analytical transmission electron microscopy. The degradation under dc-field bias involves electromigration and accumulation of oxygen vacancies at interfaces. The nonstoichiometric BaTiO3-delta becomes locally more conducting through increased oxygen vacancy concentration and Ti ion reduction. The symmetry across the dielectric layer and locally across each grain is broken during the degradation process. Locally, the nonstoichiometry becomes so severe that metastable lattice structures are formed. The degradation in insulation resistance at the grain boundaries and electrode interfaces is associated with the double Schottky-barrier potential lowering and narrowing. This may correlate with an effective decrease in net acceptor charge density at the grain boundaries. (C) 2004 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据