4.7 Article

On the origin of radio emission in the X-ray states of XTE J1650-500 during the 2001-2002 outburst

期刊

ASTROPHYSICAL JOURNAL
卷 617, 期 2, 页码 1272-1283

出版社

IOP PUBLISHING LTD
DOI: 10.1086/425650

关键词

accretion, accretion disks; black hole physics; ISM : jets and outflows; radio continuum : stars; stars : individual (GX 339-4, XTE J1550-564, XTE J1650-500, XTE J1859+226)

向作者/读者索取更多资源

We report on simultaneous radio and X-ray observations of the black hole candidate XTE J1650-500 during the course of its 2001-2002 outburst. The scheduling of the observations allowed us to sample the properties of XTE J1650-500 in different X-ray spectral states, namely, the hard state, the steep power-law state, and the thermal dominant state, according to the recent spectral classification of McClintock & Remillard. The hard state is consistent with a compact jet dominating the spectral energy distribution at radio frequencies; however, the current data suggest that its contribution as direct synchrotron emission at higher energies may not be significant. In that case, XTE J1650-500 may be dominated by Compton processes (either inverse Comptonization of thermal disk photons and/or synchrotron self-Compton radiation from the base of the compact jet) in the X-ray regime. We surprisingly detect a faint level of radio emission in the thermal dominant state that may be consistent with the emission of previously ejected material interacting with the interstellar medium, similar (but on a smaller angular scale) to what was observed in XTE J1550-564 by Corbel and coworkers. Based on the properties of radio emission in the steep power-law state of XTE J1650-500 and taking into account the behavior of other black hole candidates (namely, GX 339-4, XTE J1550-564, and XTE J1859+226) while in the intermediate and steep power-law states, we are able to present a general pattern of behavior for the origin of radio emission in these two states that could be important for understanding the accretion-ejection coupling very close to the black hole event horizon.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据