4.5 Article

Parameter-optimized digital holographic microscope for high-resolution living-cell analysis

期刊

APPLIED OPTICS
卷 43, 期 36, 页码 6536-6544

出版社

OPTICAL SOC AMER
DOI: 10.1364/AO.43.006536

关键词

-

类别

向作者/读者索取更多资源

A parameter-optimized off-axis setup for digital holographic microscopy is presented for simultaneous, high-resolution, full-field quantitative amplitude and quantitative phase-contrast microscopy and the detection of changes in optical path length in transparent objects, such as undyed living cells. Numerical reconstruction with the described nondiffractive reconstruction method, which suppresses the zero order and the twin image, requires a mathematical model of the phase-difference distribution between the object wave and the reference wave in the hologram plane. Therefore an automated algorithm is explained that determines the parameters of the mathematical model by carrying out the discrete Fresnel transform. Furthermore the relationship between the axial position of the object and the reconstruction distance, which is required for optimization of the lateral resolution of the holographic images, is derived. The lateral and the axial resolutions of the system are discussed and quantified by application to technical objects and to living cells. (C) 2004 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据