4.8 Article

Phylogeny of protein-folding trajectories reveals a unique pathway to native structure

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0407015102

关键词

grid computing; simulation; trajectory alignment; Trp-cage

向作者/读者索取更多资源

To scrutinize how a protein folds at atomic resolution, we performed 200 molecular dynamics simulations (each of 50 ns) of the miniprotein Trp-cage on the computational grid. Within the trajectories, 58 folding and 31 unfolding events were identified and subjected to extensive comparison and classification. Based on an analogy with biological sequences, the folding and unfolding trajectories (arrays of sequential snapshots of structures) were aligned by dynamic programming allowing gaps. A phylogenetic tree derived from the alignments revealed four distinct groups of the trajectories, characterized by the Trp side-chain motions and the main-chain motions. It was found that only one group attained the native structure and that the other three led to pseudonative structures having the correct main-chain trace but different nonnative Trp side-chain rotamers, indicating that those four folded structures were each attained through a unique folding pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据