4.6 Article

Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 52, 页码 54463-54469

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M404786200

关键词

-

向作者/读者索取更多资源

Soluble factors such as polypeptide growth factors, mitogenic lipids, inflammatory cytokines, and hormones are known regulators of cell proliferation. However, the effect of mechanical stimuli on cell proliferation is less well understood. Here we examined the effect of low intensity pulsed ultrasound ( US), which is used to promote wound healing, on the proliferation of primary human foreskin fibroblasts and the underlying signaling mechanisms. We show that a single 6-11-min US stimulation increases bromodeoxyuridine incorporation. In addition, an increase in the total cell number is observed after sequential US stimulation. US induced stress fiber and focal adhesion formation via activation of Rho. We further observed that US selectively induced activation of extracellular signal-regulated kinase (ERK) 1/2. Inhibition of Rho-associated coiled-coil-containing protein kinase ( ROCK) prevented US-induced ERK1/2 activation, demonstrating that the Rho/ROCK pathway is an upstream regulator of ERK activation in response to US. Consequently, activation of ROCK and MEK-1 was required for US-induced DNA synthesis. Finally, an integrin beta(1) blocking antibody as well as a RGD peptide prevented US-induced DNA synthesis. In addition, US slightly increased phosphorylation of Src at Tyr(416), and Src activity was found to be required for ERK1/2 activation in response to US. In conclusion, our data demonstrate for the first time that US promotes cell proliferation via activation of integrin receptors and a Rho/ROCK/Src/ERK signaling pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据