4.6 Article

Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 52, 页码 54221-54229

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M411669200

关键词

-

资金

  1. NCRR NIH HHS [P20 RR-17675] Funding Source: Medline
  2. NIGMS NIH HHS [GM41840] Funding Source: Medline

向作者/读者索取更多资源

Copper plays an essential role in processes including signaling to the transcription and protein trafficking machinery, oxidative phosphorylation, iron mobilization, neuropeptide maturation, and normal development. Whereas much is known about intracellular mobilization of ions such as calcium, little information is available on how eukaryotic cells mobilize intracellular copper stores. We describe a mechanism by which the Saccharomyces cerevisiae Ctr2 protein provides bio-available copper via mobilization of intracellular copper stores. Whereas Ctr2 exhibits structural similarity to the Ctr1 plasma membrane copper importer, microscopic and biochemical fractionation studies localize Ctr2 to the vacuole membrane. We demonstrate that Ctr2 mobilizes vacuolar copper stores in a manner dependent on amino acid residues conserved between the Ctr1 and Ctr2 copper transport family and that ctr2Delta mutants hyper-accumulate vacuolar copper. Furthermore, a Ctr2 mutant that is mislocalized to the plasma membrane stimulates extracellular copper uptake, supporting a direct role for Ctr2 in copper transport across membranes. These studies identify a novel mechanism for copper mobilization and suggest that organisms cope with copper deprivation via the use of intracellular vesicular stores.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据