4.6 Article

Dendrimer-mediated formation of Cu-CuOx nanoparticles on silica and their physical and catalytic characterization

期刊

APPLIED CATALYSIS A-GENERAL
卷 278, 期 1, 页码 73-81

出版社

ELSEVIER
DOI: 10.1016/j.apcata.2004.09.027

关键词

copper dispersion; N2O decomposition; CO adsorption; deridrimer

向作者/读者索取更多资源

Copper-silica catalysts were synthesized by impregnation of sol-gel derived silicas containing entrapped DAB-Am-64 dendrimer as both chelating and pore-templating agent, with methanolic copper nitrate Solutions. Basic materials characterization included X-ray diffraction (XRD), transmission electron microscopy (TEM), and nitrogen adsorption. The metallic and monovalent copper contents were determined by N2O decomposition and CO adsorption, respectively. The N2O decomposition reaction and CO adsorption were followed by mass spectrometry (MS) and thermogravimetry in an oscillating balance reactor (OBR). Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) was used to monitor the modes of co-adsorption of N2O and CO as a function of temperature. The N2O + CO temperature-programmed reaction indicates that the copper oxidation state changes under reaction, and as a consequence a transition in reaction regime occurs as temperature increases. Control of the ultimate particle size of Cu species, while heavily influenced by the dendrimer especially at lower Cu:dendrimer ratios, is not exact. Factors such as calcination and reduction temperatures needed to be investigated in order to maximize the impact of dendrimer complexation on the final state of the catalyst. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据