4.6 Article

Human PTIP facilitates ATM-mediated activation of p53 and promotes cellular resistance to ionizing radiation

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 279, 期 53, 页码 55562-55569

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M411021200

关键词

-

向作者/读者索取更多资源

Mus musculus Pax2 transactivation domain-interacting protein (Ptip) is an essential gene required for the maintenance of genome stability, although its precise molecular role is unclear. Human PTIP (hPTIP) was recently isolated in a screen for proteins, translated from cDNA pools, capable of interacting with peptides phosphorylated by the ATM (ataxia telangiectasia-mutated)/ATR (ataxia telangiectasia-related) protein kinases. hPTIP was described as a 757-amino acid protein bearing four BRCT domains. Here we report that instead full-length endogenous hPTIP contains 1069 amino acids and six BRCT domains. hPTIP shows increased association with 53BP1 in response to ionizing radiation (IR) but not in response to other DNA-damaging agents. Whereas translocation of both 53BP1 and hPTIP to sites of IR-induced DNA damage occurs independently of ATM, IR-induced association of PTIP and 53BP1 requires ATM. Deletion analysis identified the domains of 53BP1 and hPTIP required for protein-protein interaction and focus formation. Data characterizing the cellular roles of hPTIP are also presented. Small interfering RNA was used to show that hPTIP is required for ATM-mediated phosphorylation of p53 at Ser(15) and for IR-induced up-regulation of the cyclin-dependent kinase inhibitor p21. Lowering hPTIP levels also increased cellular sensitivity to IR, suggesting that this protein plays a critical role in maintaining genome stability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据