4.7 Article

Particle migration in a flow of nanoparticle suspensions

期刊

POWDER TECHNOLOGY
卷 149, 期 2-3, 页码 84-92

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.powtec.2004.11.012

关键词

particle migration; nanoparticles; suspensions; pipe flow

向作者/读者索取更多资源

This paper is concerned with particle migration in pressure-driven laminar pipe flows of relatively dilute suspensions of nanoparticles (nanofluids), one of the most frequently used configuration in industries. The motivation behind the work is associated with the thermal behaviour of nanofluids, which can greatly exceed the values predicted by currently available macroscopic theories. A theoretical model is formulated to predict particle concentration, and velocity field of nanofluids in the transverse plane of the pipe. The model takes into account the effects of the shear-induced and viscosity gradient-induced particle migrations, as well as self-diffusion due to the Brownian motion. It is shown that particle concentration in the wall region can be much lower than that in the central core region. This indicates a highly nonuniform thermal conductivity profile across the transverse plane of the pipe, and thus has a significant implication to heat transfer intensification using nanofluids. The results also suggest the existence of an optimal particle size whereby the thermal conductivity is enhanced with little penalty due to the effect of pressure drop. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据