4.6 Article

Development and characterization of a silica monolith immobilized enzyme micro-bioreactor

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 44, 期 1, 页码 236-240

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie049354f

关键词

-

向作者/读者索取更多资源

Several 10-cm-long capillary tubes [made of poly(ether ether ketone) (PEEK)] with inside diameters of 0.1-2.0 mm were filled with silica monolith-immobilized protease derived by in situ sol-gel transition from a 1:4 mixture of tetramethoxysilane and methyltrimethoxysilane. Transesterification between 20 mM (S)-(-)-glycidol and 0.4 M vinyl n-butyrate in an organic solvent was used as the test reaction. The substrate solution flowed through the column at a flow rate of 0.0004-5.0 mL(.)min(-1). The conversion in the micro-bioreactor was higher than that in the batch reactor at a high liquid flow rate. When three tubes were connected in series, the conversion at a fixed ratio of the mass of the enzyme to the liquid flow rate was increased by approximately 50%, because of the tripling of the flow rate as compared to the case with a single tube. Changes in the tube diameter had no influence on the conversion at a fixed superficial liquid velocity. Further, the conversion increased with a decrease in the enzyme content. These results were ascribed to the apparent effect of liquid-solid mass transfer and were analyzed quantitatively using a simple mathematical model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据