4.8 Article

MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation

期刊

MOLECULAR CELL
卷 17, 期 1, 页码 37-48

出版社

CELL PRESS
DOI: 10.1016/j.molcel.2004.11.021

关键词

-

资金

  1. NIGMS NIH HHS [GM60594] Funding Source: Medline

向作者/读者索取更多资源

The cellular response to DNA damage is mediated by evolutionarily conserved Ser/Thr kinases, phosphorylation of Cdc25 protein phosphatases, binding to 14-3-3 proteins, and exit from the cell cycle. To investigate DNA damage responses mediated by the p38/stress-activated protein kinase (SAPK) axis of signaling, the optimal phosphorylation motifs of mammalian p38alpha SAPK and MAPKAP kinase-2 were determined. The optimal substrate motif for MAPKAP kinase-2, but not for p38 SAPK, closely matches the 14-3-3 binding site on Cdc25B/C. We show that MAPKAP kinase-2 is directly responsible for Cdc25B/C phosphorylation and 14-3-3 binding in vitro and in response to UV-induced DNA damage within mammalian cells. Downregulation of MAPKAP kinase-2 eliminates DNA damage-induced G(2)/M, G(1), and intra S phase checkpoints. We propose that MAPKAP kinase-2 is a new member of the DNA damage checkpoint kinase family that functions in parallel with Chk1 and Chk2 to integrate DNA damage signaling responses and cell cycle arrest in mammalian cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据