4.7 Article

Extraction of physically realistic pore network properties from three-dimensional synchrotron X-ray microtomography images of unconsolidated porous media systems

期刊

JOURNAL OF HYDROLOGY
卷 300, 期 1-4, 页码 44-64

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jhydrol.2004.05.005

关键词

synchrotron X-ray tomography; porous media; pore network structure; skeletonization; spatial correlation; resolution

向作者/读者索取更多资源

This paper presents application of a series of algorithms used to extract pore network structure from high-resolution three-dimensional synchrotron microtomography images of unconsolidated porous media systems. These algorithms are based on the three-dimensional skeletonization that simplifies the pore space to networks in the form of nodes connected to paths. Dilation algorithms were developed to generate inscribed spheres on the nodes and paths of the medial axis to represent pore-bodies and pore-throats of the network, respectively. The end result is a physically representative pore network structure, i.e. three-dimensional spatial distribution (i.e. x-, y-, and z-coordinates) of pore-bodies and pore-throats, pore-body size distribution, pore-throat size distribution, and the connectivity. Systems analyzed in this study include different glass bead systems and natural marine sand. The media ranged in size from 0.123 to 1.0 mm, while the image volumes ranged between 7.7 and 108.9 mm(3). In addition to extracting the pore network structure, the porosity, specific surface area, and representative elementary volume analysis on the porosity were calculated. Spatial correlation between pore-body sizes in the network was investigated using semivariograms and integral scale concepts. The impact of resolution on the calculated property was also investigated. In this work, we show that microtomography is an effective tool to non-destructively extract the structure of many systems. The quality of the datasets depends on photon energy, photon flux, size of the sample, type of the sample, and size of the sample 'features'. Results show that the developed method of extracting pore network structure is applicable to ideal and natural porous media systems. The impact of resolution on the quantification of the network structure properties varies in its significance based on feature size of the system and the properties being calculated. Therefore, a thorough resolution sensitivity analysis should be carried out to determine the degree of error associated with a system imaged at a given resolution. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据