4.5 Article

The interaction of carbohydrate-binding modules with insoluble non-crystalline cellulose is enthalpically driven

期刊

BIOCHEMICAL JOURNAL
卷 385, 期 -, 页码 479-484

出版社

PORTLAND PRESS LTD
DOI: 10.1042/BJ20041473

关键词

adsorption; carbohydrate-binding module; cellulose; cellulose-binding domain; non-crystalline; thermodynamics

向作者/读者索取更多资源

Natural cellulose exists as a composite of cellulose forms, which can be broadly characterized as crystalline or non-crystalline. The recognition of both of these forms of cellulose by the CBMs (carbohydrate-binding modules) of microbial glycoside hydrolases is important for the efficient natural and biotechnological conversion of cellulosic biomass. The category of CBM that binds insoluble non-crystalline cellulose does so with an affinity approx. 10-20-fold greater than their affinity for cello-oligosaccharides and/or soluble polysaccharides. This phenomenon has been assumed to originate from the effects of changes in configurational entropy upon binding. The loss of configurational entropy is thought to be less profound upon binding to conformationally restrained insoluble non-crystalline cellulose, resulting in larger free energies of binding. However, using isothermal titration calorimetry, it is shown that this is not the case for the high-affinity interactions of CcCBM17 (the family 17 CBM from EngF of Clostridium cellulovorans) and BspCBM28 (the family 28 CBM from Cel5A of Bacillus species 1139) with regenerated cellulose, an insoluble preparation of primarily non-crystalline cellulose. The enhanced free energy of binding of non-crystalline cellulose relative to cello-oligosaccharides is by virtue of improved enthalpy, not entropy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据