4.7 Article

Eukaryotic arylamine N-acetyltransferase investigation of substrate specificity by high-throughput screening

期刊

BIOCHEMICAL PHARMACOLOGY
卷 69, 期 2, 页码 347-359

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2004.09.014

关键词

arylamine N-acetyltransferase; xenobiotic metabolism; recombinant protein; high-throughput screening; arylamines; acetylCoA/CoA derivatives

向作者/读者索取更多资源

Arylamine N-acetyltransferases (NAT; EC 2.3.1.5) catalyse the transfer of acetyl groups from acetylCoA to xenobiotics, including drugs and carcinogens. The enzyme is found extensively in both eukaryotes and prokaryotes, yet the endogenous roles of NATs are still unclear. In order to study the properties of eukaryotic NATs, high-throughput substrate and inhibitor screens have been developed using pure soluble recombinant Syrian hamster NAT2 (shNAT2) protein. The assay can be used with a wide range of compounds and was used to determine substrate specificity of shNAT2. We describe the expression and characterisation of shNAT2 and also purified recombinant human NAT1 and NAT2, including the use of the assay to explore the substrate specificities of each of the enzymes. Hamster NAT2 has similar substrate specificity to human NAT1, acetylating para-aminobenzoate but not arylhydrazine and hydralazine compounds. The overlapping but distinct substrate-specific activity profiles of human NAT1 and NAT2 were clearly observed from the screen. Naturally occurring compounds were tested as substrates or inhibitors of shNAT2 and succinylCoA was found to be a potent inhibitor of shNAT2. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据