4.1 Article

Normal and shear forces between a polyelectrolyte brush and a solid surface

期刊

出版社

WILEY-BLACKWELL
DOI: 10.1002/polb.20321

关键词

polyelectrolyte brushes; lubrication; diblock copolymers; surfactants

向作者/读者索取更多资源

The diblock copolymer poly(methyl methacrylate)-b-poly(sodium sulfonated glycidyl methacrylate) (PMMA-b-PSGMA) was end-attached by its hydrophobic block (PMMA) onto mica hydrophobized by a stearic trimethylammonium iodide (STAI) layer, to form a polyelectrolyte brush immersed in water. With a surface force balance (SFB), we extended earlier measurements between two such brush layers for the case of normal and shear forces at different shear rates, surface separation, and compressions between one mica surface coated with STAI or a STAI-diblock layer against a bare mica surface. After coating one of the surfaces with STAI, a long range attraction that results in a jump into an adhesive flat contact between the hydrophobic and hydrophilic surfaces was observed. A very different behavior was seen after forming the polyelectrolyte brush on the STAI-coated surface. The long range attraction was replaced by repulsion, accompanied by very low friction during shear (ca. three orders of magnitude lower than with adsorbed polyelectrolytes). On further compression, a weak attraction to the adhesive contact was observed. From the final surface-surface contact separation, we deduce that most of the polyelectrolyte diblock brush layer was squeezed out from the gap, leaving the STAI layer and a small amount of the polymer attached to the surface. Stick-sliding behavior was seen while applying shear, suggesting a dissipation mechanism caused by the trapped polyelectrolyte. (C) 2004 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据