4.6 Article

CAPON expression in skeletal muscle is regulated by position, repair, NOS activity, and dystrophy

期刊

EXPERIMENTAL CELL RESEARCH
卷 302, 期 2, 页码 170-179

出版社

ELSEVIER INC
DOI: 10.1016/j.yexcr.2004.09.007

关键词

mdx mouse; nitric oxide; utrophin; Dyc-1; Caenorhabditis elegans; regeneration; cytoskeleton

向作者/读者索取更多资源

In skeletal muscle, the localization of nNOS is destabilized in the absence of dystrophin, which impacts muscle function and satellite cell activation. In neurons, the adaptor protein, carboxy-terminal PDZ ligand of nNOS (CAPON), regulates the distribution of neuronal nitric oxide synthase (nNOS), which produces the key signaling molecule nitric oxide (NO). While a CAPON-like gene is known to compensate functionally for a dystrophic phenotype in muscle of Caenorhabditis elegans, CAPON expression has not been reported for mammalian muscle. Here, CAPON expression was identified in mouse muscle using Northern and Western blotting and in situ hybridization in combination with immunostaining for laminin. CAPON RNA was expressed in developing normal and dystrophic muscles near fiber junctions with tendons, and levels increased from 1 to 3 weeks. In regenerating normal muscle and also in dystrophic muscles in the mdx mouse, CAPON transcripts were prominent in satellite cells and new myotubes. Expression of CAPON RNA increased in diaphragm muscle of normal and mdx mice after treatment with L-arginine, the NOS substrate. Both CAPON and utrophin protein levels increased in dystrophic quadriceps muscle after treatment with the steroid deflazacort plus L-arginine, known to reduce the dystrophic phenotype. The identification of CAPON transcripts and protein in mammalian muscle and responses to L-arginine suggest CAPON may have a functional role in stabilizing neuronal NOS in skeletal muscle in the cytoskeletal complex associated with dystrophin/utrophin, with possible applications to therapy for human muscular dystrophy. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据