4.7 Article

Neural network forecasting for seasonal and trend time series

期刊

EUROPEAN JOURNAL OF OPERATIONAL RESEARCH
卷 160, 期 2, 页码 501-514

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejor.2003.08.037

关键词

neural networks; Box-Jenkins method; seasonality; time series; forecasting

向作者/读者索取更多资源

Neural networks have been widely used as a promising method for time series forecasting. However, limited empirical studies on seasonal time series forecasting with neural networks yield mixed results. While some find that neural networks are able to model seasonality directly and prior deseasonalization is not necessary, others conclude just the opposite. In this paper, we investigate the issue of how to effectively model time series with both seasonal and trend patterns. In particular, we study the effectiveness of data preprocessing, including deseasonalization and detrending, on neural network modeling and forecasting performance. Both simulation and real data are examined and results are compared to those obtained from the Box-Jenkins seasonal autoregressive integrated moving average models. We find that neural networks are not able to capture seasonal or trend variations effectively with the unpreprocessed raw data and either detrending or deseasonalization can dramatically reduce forecasting errors. Moreover, a combined detrending and deseasonalization is found to be the most effective data preprocessing approach. (C) 2003 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据