3.8 Article

Role of human cripto-1 in tumor angiogenesis

期刊

JOURNAL OF THE NATIONAL CANCER INSTITUTE
卷 97, 期 2, 页码 132-141

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/jnci/dji011

关键词

-

类别

向作者/读者索取更多资源

Background: Human cripto-1 (CR-1) promotes cell transformation and increases migration and invasion of various mouse and human epithelial cell lines. We investigated whether CR-1 also stimulates angiogenesis. Methods: We used human umbilical vein endothelial cells (HUVECs) to measure in vitro migration with fibronectin-coated Boyden chambers, invasion with Matrigel-coated Boyden chambers, proliferation with a tetrazolium salt, and differentiation with an in vitro Matrigel assay. We investigated new blood vessel formation in vivo by use of Matrigel-filled silicone cylinders implanted under the skin of nude mice and by use of a breast cancer xenograft model with CR-1-transfected or control Neo-transfected MCF-7 human breast cancer cells. We also used a blocking anti-CR-1 monoclonal antibody to investigate the role of CR-1 in angiogenesis in vivo and in vitro. All statistical tests were two-sided. Results: CR-1 stimulated HUVEC proliferation, migration, and invasion and induced HUVEC differentiation into vascular-like structures on Matrigel. In vivo recombinant CR-1 protein induced microvessel formation in Matrigel-filled silicone cylinders, and microvessel formation was statistically significantly inhibited with a blocking anti-CR-1 monoclonal antibody (CR-1 and antibody = 127% of microvessel formation compared with that in untreated control cylinders and CR-1 alone = 259%; difference = 132%, 95% confidence interval [CI] = 123% to 140%; P < .001). Tumors formed by CR-1-transfected MCF-7 cells in the cleared mammary fat pad of nude mice had higher microvessel density than tumors formed by control Neo-transfected MCF-7 cells (CR-1-transfected cells = 4.66 vessels per field and Neo-transfected cells = 2.33 vessels per field; difference = 2.33 vessels per field, 95% CI = 1.2 to 2.8; P = .004). Conclusion: CR-1 appears to have an important role in the multistep process of angiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据